Traditionally, winch connectors permitted a winch to be attached to a truck's box or ball hitch in one position only, thereby limiting the number of pulling angles the winch could provide. This is due to the fact that most winches were used for only a single purpose (i.e., pulling a boat out of the water, pulling stumps out of the ground, pulling a car onto the truck's bed, etc.,) thus only a limited number of pulling angles were required. If it was necessary to utilize the winch for any other purpose that required a pulling angle outside the scope of possible pulling angles, either the truck carrying the winch had to be repositioned to place the winch in an appropriate position or, barring that, it was simply impossible to perform the necessary task.
Situations where a large variety of pulling angles may be necessary are, for instance, when a truck's front and rear wheels on one side are in a ditch and the only pulling point is adjacent the side of the truck not in the ditch. If the winch is usually used for pulling a boat out of the water it is not possible for the winch to draw cable around the pulling point and pull the truck out of the ditch. Rather, in this situation it is necessary to have a winch capable of pulling in a direction transverse to the longitudinal axis of the truck in order to pull the truck out of the ditch. There are innumerable other situations where it may be necessary to utilize a winch over a large range of pulling angles but the prior art suggests no ways of achieving this in a practical manner. In furtherance thereof, it may also be useful to provide a transportable box hitch in which a universal winch connector may be positioned in order to use the winch in a variety of locations (i.e., on the side of a truck, or on an outside wall of a house, etc.).
In accordance with the foregoing objects and advantages, the present invention provides a universal winch connector which permits a conventional electrically or manually operated winch to be attached to a conventional box hitch (class 2 or 3) in any one of four possible positions. By having the ability to position the winch in four different orientations, the winch may apply pulling force over a large range of pulling angles (about 4 times the range of pulling angles when attached via a conventional winch connector).
The universal winch connector which embodies the present invention is generally comprised of an elongated, square cross-section, tubular member having means for attaching a winch to one end thereof (i.e., welding), and means for attaching itself to a box hitch at its opposite end. The box hitch attaching means simply include first and second sets of longitudinally spaced holes drilled through each wall of the tubular member adjacent the hitch attaching end thereof. The holes formed through opposite walls, of each of the first and second sets, respectively, are axially aligned with one another. The first holes drilled through each wall of the tubular member permit secure attachment of the connector to a conventional class 2 box hitch, while the second holes permit secure attachment to a conventional class 3 box hitch. Once the holes are aligned in the box hitch, any appropriate type of pin may be passed through the holes in the hitch and tubular member to secure the attachment.
The reason for holes being formed through each of the four walls of the tubular member is to permit the connector to be positioned in the box hitch in any of four positions. Therefore, when a winch is attached to a first wall of the tubular member, simply by pulling the connector out and rotating it 90 degrees, 180 degrees, or 270 degrees about its longitudinal axis, the pulling angles at which the winch may pull vary accordingly, as will be explained in greater detail hereinafter.
No comments:
Post a Comment